Scaling limits of directed polymers in spatial-correlated environment

Fuqing Gao

Wuhan University

The 16th Workshop on Markov Processes and Related Topics

CSU and BNU, July 12-16, 2021

Joint work with Yingxia Chen

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Outline

Introduction

Background Model and assumptions Stochastic heat equation

Main results

Sketch of Proof

Directed polymer

 Directed polymer: a random probability distribution on the path space (Z^d)^{Z+}

$$\mathbb{P}_{n,\beta}^{\omega}(S) := \frac{1}{Z_n(\beta,\omega)} e^{\beta \sum_{i=1}^n \omega(i,S_i)} \mathbb{P}(S), \qquad (1.1)$$

- where $\beta > 0$ is the inverse temperature,
- $S = \{S_n, n \ge 0\}$ is a random walk in \mathbb{Z}^d on $((\mathbb{Z}^d)^{\mathbb{Z}_+}, \mathcal{F}^S, \mathbb{P}),$
- $\omega = \{\omega(i, x), (i, x) \in \mathbb{Z}_+ \times \mathbb{Z}^d\}$ is an environment which is a family of identically distributed random variables on $(\Omega, \mathcal{F}^{\Omega}, \mathbf{P})$,
- ► $Z_n(\beta, \omega)$ is the point-to-line partition function defined by

$$Z_n(\beta;\omega) := \mathbb{E}\left(\boldsymbol{e}^{\beta\sum_{i=1}^n \omega(i,S_i)}\right). \tag{1.2}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- D. A. Huse, C. L. Henley. Pinning and roughening of domain walls in Ising systems due to random impurities. Phys. Rev. Lett. 54(1985), 2708-2711.
- J. Z. Imbrie, T. Spencer. Diffusion of directed polymers in a random environment. J. Stat. Phys. 52(1988), 609-626.
- F. Comets. Directed polymers in random environments, Lecture Notes in Mathematics 2175. Springer, 2017

► The free energy:

$$p_n(\beta) := \frac{1}{n} \log Z_n(\beta; \omega)$$

The point-to-point partition function

$$Z_{n,x}(\beta;\omega) := \mathbb{E}\left(e^{\beta\sum_{i=1}^{n}\omega(i,S_i)}I_{\{S_n=x\}}\right).$$
(1.3)

The polymer endpoint distribution

$$\mathbb{P}_{n,\beta}^{\omega}(S_n = x) := \frac{Z_{n,x}(\beta;\omega)}{Z_n(\beta,\omega)}.$$
(1.4)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

- To study the behaviors of the the polymer as n → ∞, and as d and β vary.
- Fluctuation exponents for the polymer endpoint and the free energy:

$$E_{\mathbb{P}_{n,\beta}^{\omega}}(S_n) \sim n^{2\zeta}, \quad \operatorname{Var}_{\mathbb{P}_{n,\beta}^{\omega}}(\log Z_n(\beta;\omega)) \sim n^{2\chi},$$

P-a.s.

$$p(\beta) := \lim_{n \to \infty} \frac{1}{n} \log Z_n(\beta; \omega).$$

- At $\beta = 0$, the polymer measure is the simple random walk, the polymer exhibits diffusive behavior. Weak disorder
- For β large, the polymer measure concentrates on paths with high energy. Strong disorder

• Assume that for β sufficiently small,

$$\lambda(\beta) := \log \mathbf{E} \boldsymbol{e}^{\beta\omega(i,x)} < \infty. \tag{1.5}$$

Then

$$p(\beta) := \lim_{n \to \infty} \frac{1}{n} \log Z_n(\beta; \omega) = \lim_{n \to \infty} \frac{1}{n} \log \mathbf{E} \left(\log Z_n(\beta; \omega) \right) < \lambda(\beta).$$

The normalized partition function

$$W_n := Z_n(\beta; \omega) \exp\{-n\lambda(\beta)\}, \ n \ge 1.$$
 (1.6)

P-a.s.

$$W_{\infty} = \lim_{n \to \infty} W_n \tag{1.7}$$

exists and either the polymer is

in weak disorder regime, $i.e., \mathbf{P}(W_{\infty} > 0) = 1;$ or in strong disorder regime, $i.e., \mathbf{P}(W_{\infty} = 0) = 1$

• When d = 1, all $\beta > 0$ are in the strong disorder regime.

The intermediate disorder regime

- Alberts, Khanin and Quastel (2014) introduced a new disorder regime: the intermediate disorder regime.
 - d = 1, the environment i.i.d., {S_n} simple symmetric random walk.
 - The scaled partition function:

$$Z_n(n^{-1/4}\beta;\omega)e^{-n\lambda(n^{-1/4}\beta)} \xrightarrow{(d)} Z_{\sqrt{2}\beta}$$

The scaled point-to-point partition function

$$\frac{1}{2}\sqrt{n}Z_{nt,\sqrt{n}x}(n^{-1/4}\beta;\omega)e^{-n\lambda(n^{-1/4}\beta)} \xrightarrow{(d)} \mathcal{Z}_{\sqrt{2}\beta}(t,x) \text{ in } C([0,1]\times\mathbb{R}),$$

where $Z_{\sqrt{2}\beta} = \int Z_{\sqrt{2}\beta}(1, x) dx$ and $u(t, x) := Z_{\sqrt{2}\beta}(t, x)$ is the mild solution of the stochastic heat equation

$$\begin{cases} \partial_t u = \frac{1}{2} \Delta u + \sqrt{2} \beta u \dot{W}, \\ u(0, x) = \delta_x. \end{cases}$$
(1.8)

(日) (日) (日) (日) (日) (日) (日)

- T. Alberts, K. Khanin, and J. Quastel. Intermediate disorder regime for directed polymers in dimension 1 + 1. Phys. Rev. Lett., 105(9)(2010),090603.
- T. Alberts, K. Khanin, and J. Quastel. The intermediate disorder regime for directed polymers in dimension 1 + 1. Ann. Probab. 42(2014), 1212–1256.

The polymer transition probabilities

$$\left\{ (s, y; t, x) \mapsto \frac{\sqrt{n}}{2} \mathbf{P}^{\omega}_{n,\beta_n} (S_{nt} = x\sqrt{n} | S_{ns} = y\sqrt{n}) \right\}$$

$$\xrightarrow{(d)} \frac{\mathcal{Z}_{\sqrt{2}\beta}(s, y; t, x) \int \mathcal{Z}_{\sqrt{2}\beta}(t, x; 1, \lambda) \, d\lambda}{\mathcal{Z}_{\sqrt{2}\beta}}$$

for $0 \le s < t \le 1$ and $x, y \in \mathbb{R}$.

Z_β(s, y; t, x) is the mild solution of the stochastic heat equation

$$\partial_t \mathcal{Z}_{\beta} = \frac{1}{2} \partial_{xx} \mathcal{Z}_{\beta} + \beta \mathcal{Z}_{\beta} \dot{W}, \qquad \mathcal{Z}_{\beta}(s, y; s, x) = \delta_0(x - y),$$

- Under the scaling β_n = βn^{-(1/4+δ)} for any δ > 0 (Supercritical scaling):
 - the partition function e^{-nλ(β_n)}Z^ω_n(βn^{-(1/4+δ)}) converges in probability to 1;
 - the endpoint density, under diffusive scaling of space, converges to the standard Gaussian distribution.
- The scalings β_n := βn^{-α} for 0 ≤ α < 1/4 (Subcritical scaling):</p>
 - ▶ The individual terms of the discrete Wiener chaos blow up as $n \to \infty$.

A D F A 同 F A E F A E F A Q A

KPZ and Scaling limits

Since the logarithm of solution of the stochastic heat equation is the Cole-Hopf solution of Kardar-Parisi-Zhang (KPZ) equation:

$$\partial_t h = \frac{1}{2} \Delta h + \frac{1}{2} (\nabla h)^2 + \sqrt{2} \beta \dot{W}, \qquad (1.9)$$

- Alberts, Khanin and Quastel (2014) have really derived the KPZ equation from the scaling limit of the directed polymer.
- These results have been extended to many new models.

J. Quastel, Introduction to KPZ. Current developments in mathematics, 2011, Int. Press, Somerville, MA, 2012, 125–194.

- Caravenna, Sun and Zygouras (JEMS, 2017) provided a unified framework to study the scaling limits of some statistical mechanics systems.
- Joseph (SPDEAC, 2018) considered an appropriate scaling limit of a model of discrete space-time stochastic heat equations.

$$\partial_t u = -\nu_\alpha (-\Delta)^{\alpha/2} u + \sigma(u) \dot{W}, \qquad (1.10)$$

where σ is Lipschitz continuous.

- Rang (SPA, 2020) considered time independent and space correlated environment.
- Furthermore, see Corwin, Nica (EJP, 2017), Clement (Ind. Math, 2019), Shen et. all. (2000) and the references therein.

Model and assumptions

We consider the directed polymer involving random walks attracted to stable laws, and time-independent and spacecorrelated environment.

$$\mathbb{P}^{\omega}_{n,\beta}(\boldsymbol{S}) := \frac{1}{Z_n(\beta,\omega)} e^{\beta \sum_{i=1}^n \omega(i,S_i)} \mathbb{P}(\boldsymbol{S}),$$

(A.1). Let the random walk {S_n, n ≥ 0} be in the domain of attraction of a stable law of index α ∈ (1,2] with period q Define

$$p(n,k) := \mathbb{P}(S_n = k), \quad n \ge 0, \ k \in \mathbb{Z},$$

and

 $p(nt,kx) := p([nt],[kx]), \qquad n \ge 0, \ k \in \mathbb{Z}, \ t \in [0,1], \ x \in \mathbb{R}$

• Let g(x) be the density of symmetric α -stable distribution.

$$g(t,x) := \frac{1}{t^{1/\alpha}} g\left(\frac{x}{t^{1/\alpha}}\right), \quad t > 0, \ x \in \mathbb{R}.$$

• (A.2). The environment $\omega = \{\omega(i, x), (i, x) \in \mathbb{Z}_+ \times \mathbb{Z}^d\}$:

$$\omega(i, \mathbf{x}) = \sum_{-\infty < \mathbf{y} < +\infty} \mathbf{a}_{\mathbf{y}} \xi(i, \mathbf{x} + \mathbf{y}), \qquad \mathbf{a}_{\mathbf{y}} \sim \delta |\mathbf{y}|^{-r},$$

where $1/2 < r < 1, \delta > 0, \{\xi(i, x) : i \in \mathbb{Z}_+, x \in \mathbb{Z}\}$ is a family of independent identical distribution variables with $\mathbf{E}(\xi(i, x)) = 0, \mathbf{E}(|\xi(i, x)|^2) = 1.$

$$\mathbf{E}e^{\beta|\xi(i,x)|} < \infty \tag{1.11}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

for β sufficiently small which implies (1.5).

$$\begin{split} & \mathsf{E}(\omega(i,x)\omega(j,y)) = \delta_{ij}\gamma(x-y), \\ & \text{where } \gamma(z) \ \sim \ \frac{1}{2q}\left(|z-q|^{3-2r}+|z+q|^{3-2r}-2|z|^{3-2r}\right) \text{ as } \\ & |z| \to \infty. \end{split}$$

G. L. Rang. From directed polymers in spatial-correlated environment to stochastic heat equations driven by fractional noise in 1+1 dimensions. Stoch. Proce. Appl. 130(2020), 3408-3444.

Multiple stochastic integral

- Let $K(x) = H(2H 1)|x|^{2H-2}$, $H = \frac{3}{2} r$.
- A time-white spatial-colored noise with the kernel K: a mean zero Gaussian process {W(φ), φ ∈ S([0, 1] × ℝ)},

$$\operatorname{Cov}(\mathcal{W}(\phi),\mathcal{W}(\psi)) = \int_0^1 \int_{\mathbb{R}} \int_{\mathbb{R}} \phi(s,x) \mathcal{K}(x-y) \psi(s,y) \mathrm{d}s \mathrm{d}x \mathrm{d}y.$$

$$\begin{aligned} \mathcal{L}_{H}^{k} = & \left\{ f: ([0,1]\times\mathbb{R})^{k} \to \mathbb{R}; \\ & \| f \|_{\mathcal{L}_{H}^{k}}^{2} := \int_{\Delta_{k}(0,1]} \int_{\mathbb{R}^{2k}} f(\mathbf{t},\mathbf{x}) \prod_{i=1}^{k} \mathcal{K}(x_{i}-y_{i}) f(\mathbf{t},\mathbf{y}) \mathrm{d}\mathbf{t} \mathrm{d}\mathbf{x} \mathrm{d}\mathbf{y} < \infty \right. \end{aligned}$$

where $\mathbf{t} = (t_1, t_2, \cdots, t_k)$, $\mathbf{x} = (x_1, x_2, \cdots, x_k)$, $\mathbf{y} = (y_1, y_2, \cdots, y_k)$, and

$$\Delta_k(0,t] = \{0 = t_0 < t_1 < t_2 < \cdots < t_k < t\}.$$

For *f* ∈ L_H, the stochastic integral W(*f*) with respect to W is defined by

$$l_{1}^{\mathcal{W}}(f) := \mathcal{W}(f) := \sum_{n \ge 1} \langle f, h_{n} \rangle_{\mathcal{L}_{H}} \mathcal{W}(h_{n}).$$

$$l_{k}^{\mathcal{W}}(f^{\otimes k}) := \int_{([0,1] \times \mathbb{R})^{k}} f^{\otimes k}(\mathbf{t}, \mathbf{x}) \mathcal{W}^{\otimes k}(\mathrm{d}\mathbf{t}\mathrm{d}\mathbf{x}) := \mathrm{H}_{k}(\mathcal{W}(f)),$$

$$f \in \mathcal{L}_{H}^{k},$$

$$l_{k}^{\mathcal{W}}(f) := \int_{([0,1] \times \mathbb{R})^{k}} f(\mathbf{t}, \mathbf{x}) \mathcal{W}^{\otimes k}(\mathrm{d}\mathbf{t}\mathrm{d}\mathbf{x}).$$

$$\operatorname{Cov}(l_{j}^{\mathcal{W}}(f), l_{k}^{\mathcal{W}}(g)) = \begin{cases} k! \langle f, g \rangle_{\mathcal{L}_{H}^{k}} & \text{if } j = k, \quad f, g \in \mathcal{L}_{H}^{k} \\ 0 & \text{if } j \neq k. \end{cases}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Stochastic heat equation

Consider the following stochastic heat equation:

$$\partial_t u = -\nu_\alpha (-\Delta)^{\alpha/2} u + \sqrt{q} \beta u \dot{\mathcal{W}}, \qquad (1.12)$$

• The mild solution solution with initial data $u_0 = u(0, x)$ can be written by

$$u(t,x) = \int_{\mathbb{R}} g(t,x-y)u(0,y)dy + \sum_{k=1}^{\infty} (\sqrt{q}\beta)^k \int_{\Delta_k(0,t]} \int_{\mathbb{R}^k} g(t-t_k,x-x_k) \quad (1.13)$$
$$\prod_{i=1}^k g(t_i-t_{i-1},x_i-x_{i-1})\mathcal{W}(dt_idx_i),$$

where $t_0 = 0, x_0 = x$.

Main results

Theorem 2.1

Assume that (A.1) and (A.2) hold. Set $\beta_n = \beta n^{-\frac{1}{2} - \frac{1}{2\alpha} + \frac{r}{\alpha}}$. Then the scaled point-to-line partition

$$Z_n(\beta_n;\omega)e^{-n\lambda(\beta_n)} \xrightarrow{(d)} u(1,0), \qquad (2.1)$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

and

$$\lim_{n\to\infty} \mathbf{E}\left(\left(Z_n(\beta_n;\omega)e^{-n\lambda(\beta_n)}\right)^2\right) = \mathbf{E}\left(\left(u(1,0)\right)^2\right),$$

where u(t, x) is the mild solution of (1.12) with initial data $u_0 = 1$.

Theorem 2.2 Let $\frac{1}{2} < r < \min\{1, \alpha - \frac{1}{2}\}$. Assume that (A.1) and (A.2) hold. Then the scaled point-to-point partition

$$\frac{1}{q}n^{1/\alpha}Z_{nt,n^{1/\alpha}x}(\beta_n;\omega)e^{-n\lambda(\beta_n)}\xrightarrow{(d)}u(t,x),$$
(2.2)

in the sense of the finite dimensional distributions in $C([0,1] \times \mathbb{R})$, and

$$\lim_{n\to\infty} \mathbf{E}\left(\left(n^{1/\alpha}Z_{nt,n^{1/\alpha}x}(\beta_n;\omega)e^{-n\lambda(\beta_n)}/q\right)^2\right) = \mathbf{E}\left(\left(u(t,x)\right)^2\right),$$

where u(t, x) is the mild solution of (1.12) with initial data $u_0(x) = \delta(x)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Furthermore, if

$$\phi(\boldsymbol{u}) := \mathbb{E}\left(\boldsymbol{e}^{\sqrt{-1}\boldsymbol{u}S_1}\right) = 1 - \nu_{\alpha}|\boldsymbol{u}|^{\alpha} + \boldsymbol{h}(\boldsymbol{u}), \quad (2.3)$$

where $h(u) = o(|u|^{\alpha})$ as $|u| \to 0$, then

$$\frac{1}{q}n^{1/\alpha}Z_{nt,n^{1/\alpha}x}(\beta_n;\omega)e^{-n\lambda(\beta_n)}\xrightarrow{(d)}u(t,x), \text{ in } C([0,1]\times\mathbb{R}),$$
(2.4)

where the topology is the supremum norm.

The polymer transition probabilities

$$\begin{cases} (s, y; t, x) \mapsto \frac{1}{q} n^{1/\alpha} \mathbf{P}^{\omega}_{n,\beta_n}(S_{nt} = n^{1/\alpha} x | S_{ns} = n^{1/\alpha} y) \\ \xrightarrow{(d)} \frac{\mathcal{Z}_{\sqrt{q}\beta}(s, y; t, x) \int \mathcal{Z}_{\sqrt{q}\beta}(t, x; 1, \lambda) d\lambda}{\mathcal{Z}_{\sqrt{q}\beta}} \end{cases}$$

for $0 \leq s < t \leq 1$ and $x, y \in \mathbb{R}$.

Z_β(s, y; t, x) is the mild solution of the stochastic heat equation

$$\partial_t \mathcal{Z}_{\beta} = -\nu_{\alpha}(-\Delta_x))^{\alpha/2} \mathcal{Z}_{\beta} + \beta \mathcal{Z}_{\beta} \dot{W}, \ \mathcal{Z}_{\beta}(s, y; s, x) = \delta_0(x-y),$$

- Foondun Joseph and Li (AAP, 2018) studied the approximation problem of a class of SPDEs, including (1.12), by systems of interacting stochastic differential equations. Our results show that the solution u(t, x) of (1.12) is the limit of the scaled point-to-point partition function of a directed polymer.
 - M. Foondun, M. Joseph, S. T. Li. An approximation result for a class of stochastic heat equations with colored noise. The Annals of Applied Probability. 28(2018), 2855–2895.

Proof of Theorem 2.1

Consider the modified point-to-line partition function:

$$\mathfrak{Z}_n(\beta;\omega) = \mathbb{E}\left(\prod_{i=1}^n \left(1 + \beta\omega(i, S_i)\right)\right), \quad (3.1)$$

Then

$$\mathfrak{Z}_n(\beta_n;\omega) = 1 + \sum_{k=1}^n \beta_n^k p_n^k(\mathbf{t},\mathbf{x}) \left(\prod_{i=1}^k \omega\left(nt_i, n^{\frac{1}{\alpha}}x_i\right)\right).$$

where

$$\boldsymbol{p}_n^k(\mathbf{t},\mathbf{x}) := \prod_{i=1}^k \boldsymbol{p}(n(t_i - t_{i-1}), n^{\frac{1}{\alpha}}(x_i - x_{i-1})), \quad (\mathbf{t},\mathbf{x}) \in \Delta \mathbb{D}_n^k,$$

$$\Delta \mathbb{D}_n^k := \left\{ (\mathbf{t}, \mathbf{x}) = ((t_1, x_1), \cdots, (t_k, x_k)) \in \mathbb{D}_n^k : 0 \le t_1 < \cdots < t_k \le 1 \right\}$$

$$\mathbb{D}_{n} := \left\{ \left(\frac{i}{n}, \frac{x}{n^{\frac{1}{\alpha}}}\right) : x \in q\mathbb{Z} + il, 1 \le i \le n \right\}$$

$$\mu(i, \mathbf{x}) = \sum_{-\infty}^{+\infty} \mathbf{a}_{\mathbf{y}} \eta(i, \mathbf{x} + \mathbf{y}),$$

where $\{\eta(i, x), (i, x) \in \mathbb{Z}_+ \times \mathbb{R}\}$ is a family of i.i.d. standard Gaussian random variables, and independent of $\{\xi(i, x), (i, x) \in \mathbb{Z}_+ \times \mathbb{R}\}$.

Define

$$\mathfrak{Z}_n(\beta_n;\mu) = 1 + \sum_{k=1}^n \beta_n^k g_k(\mathbf{t},\mathbf{x}) \left(\prod_{i=1}^k \mu\left(nt_i, n^{\frac{1}{\alpha}} x_i\right) \right).$$

where

$$g_k(\mathbf{t},\mathbf{x}) := \prod_{i=1}^k g(t_i - t_{i-1}, x_i - x_{i-1})$$
 $(\mathbf{t},\mathbf{x}) \in \Delta_k(0,1] \times \mathbb{R}^k.$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

$$\mathfrak{Z}_{n}(\beta_{n};\omega) \xrightarrow{(d)} 1 + \sum_{k=1}^{\infty} (\beta\sqrt{q})^{k} \int_{\Delta_{k}(0,1]} \int_{\mathbb{R}^{k}} g_{k}(\mathbf{s},\mathbf{y}) \prod_{i=1}^{k} \mathcal{W}(\mathrm{d}s_{i}\mathrm{d}y_{i}).$$

$$\lim_{n \to \infty} \mathbf{E} \left(\left(Z_{n}(\beta_{n};\omega) e^{-n\lambda(\beta_{n})} \right) - \mathfrak{Z}_{n}(\beta_{n};\omega) \right)^{2} = 0.$$

► Therefore

$$Z_n(\beta_n;\omega)e^{-n\lambda(\beta_n)} \xrightarrow{(d)} 1 + \sum_{k=1}^{\infty} (\beta\sqrt{q})^k \int_{\Delta_k(0,1]} \int_{\mathbb{R}^k} g_k(\mathbf{s},\mathbf{y}) \prod_{i=1}^k \mathcal{W}(\mathrm{d}s_i \mathrm{d}y_i).$$

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

Proof of Theorem 2.2

Consider the modified point-to-point partition defined by

$$\mathfrak{Z}_{n,x}(\beta;\omega) = \mathbb{E}\left(\prod_{i=1}^{n} \left(1 + \beta\omega(i, S_i)\right) I_{\{S_n=x\}}\right).$$

$$\begin{aligned} \mathfrak{Z}_{n,n^{1/\alpha}x}(\beta_{n};\omega) \\ =& p(n,n^{1/\alpha}x) \left(1 + \sum_{k=1}^{n} \beta_{n}^{k} \sum_{(\mathbf{t},\mathbf{x})\in\Delta\mathbb{D}_{n}^{k}} \psi_{n,x}^{k}(\mathbf{t},\mathbf{x}) \prod_{i=1}^{k} \omega(nt_{i},n^{1/\alpha}x_{i}) \right) \end{aligned}$$

where

$$\psi_{n,x}^{k}(\mathbf{t},\mathbf{x}) = \frac{p(n(1-t_{k}), n^{1/\alpha}(x-x_{k}))}{p(n, n^{1/\alpha}x)} \prod_{i=1}^{k} p(n(t_{i}-t_{i-1}), n^{1/\alpha}(x_{i}-x_{i-1})).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

$$z_n(t,x) := n^{\frac{1}{\alpha}} \mathfrak{Z}_{nt,n^{1/\alpha}x}(\beta_n;\omega), \quad \bar{z}_n(t,x) = \mathcal{P}z_n(t,x)$$

where \mathcal{P} is the transition probability of $\{S_n\}$.

Then

$$z_n(t,x) = p_n(t,x) + \beta \int_0^t \int_{\mathbb{R}} p_n(t-s,y-x)\overline{z}_n(s,y)\omega_n(s,y) \mathrm{d}s \mathrm{d}y.$$
(3.2)

where

$$p_n(t,x) = n^{\frac{1}{\alpha}} p([nt], [n^{\frac{1}{\alpha}}x])$$
$$\omega_n(s, y) = n^{\frac{1}{2} - \frac{1}{2\alpha} + \frac{r}{\alpha}} \omega([ns], [n^{\frac{1}{\alpha}}y]).$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - 釣�?

- Convergence of finite dimensional distributions: Proof of Theorem 2.1
- Tightness:

$$\sup_{t\in[\varepsilon,1],x\in\mathbb{R}}\mathsf{E}\left(z_{n}^{2m}(t,x)\right)\leq C_{m},\ \sup_{t\in[\varepsilon,1]}\int_{\mathbb{R}}\mathsf{E}\left(z_{n}^{2m}(t,x)\right)\mathrm{d}x\leq C_{m}$$

• For all $t \geq \varepsilon$,

$$\mathsf{E} \left(z_n(t+h,x+\delta) - z_n(t,x) \right)^{2m} \\ \leq C_m \left(h^{\left\{ (1-\frac{1}{\alpha})(2r-1)m \right\} \wedge \left\{ \frac{m}{\alpha} \right\}} + \delta^{\left\{ (1-\frac{1}{\alpha})(2r-1)m \right\} \wedge \left\{ \frac{m}{\alpha} \right\}} \right).$$

Choose *m* large enough such that $\{(1-\frac{1}{\alpha})(2r-1)m\} \land \{\frac{m}{\alpha}\} > 2.$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- T. Alberts, K. Khanin, and J. Quastel. The intermediate disorder regime for directed polymers in dimension 1 + 1. *Ann. Probab.* 42(2014), 1212–1256.
- G. Amir, I. Corwin, and J. Quastel. Probability distribution of the free energy of the continuum directed random polymer in 1 + 1 dimensions. *Comm. Pure Appl. Math.* 64 (2011), 466–537.
- F. Caravenna, R. Sun, N. Zygouras. Polynomial chaos and scaling limits of disordered systems. *J. Eur. Math. Soc.*19(2017),1–65.
- E. Mossel, R. O'Donnell and K. Oleszkiewicz. Noise stability of functions with low influences: Invariance and optimality. *Ann. Math.*171(2010), 295–341.
- G. L. Rang. From directed polymers in spatial-correlated environment to stochastic heat equations driven by fractional noise in 1+1 dimensions. *Stochastic Process. Appl.* 130(2020), 3408-3444.

Thank you!

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●