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Directed polymer
I Directed polymer: a random probability distribution on the

path space (Zd )Z+

Pωn,β(S) :=
1

Zn(β, ω)
eβ

∑n
i=1 ω(i,Si )P(S), (1.1)

I where β > 0 is the inverse temperature,
I S = {Sn,n ≥ 0} is a random walk in Zd on ((Zd )Z+ ,FS ,P),
I ω = {ω(i , x), (i , x) ∈ Z+ × Zd} is an environment which is a

family of identically distributed random variables on (Ω,FΩ,P),
I Zn(β, ω) is the point-to-line partition function defined by

Zn(β;ω) := E
(

eβ
∑n

i=1 ω(i,Si )
)
. (1.2)

I D. A. Huse, C. L. Henley. Pinning and roughening of domain walls in Ising systems due to random impurities.
Phys. Rev. Lett. 54(1985), 2708-2711.

I J. Z. Imbrie, T. Spencer. Diffusion of directed polymers in a random environment. J. Stat. Phys. 52(1988),
609-626.

I F. Comets. Directed polymers in random environments, Lecture Notes in Mathematics 2175. Springer, 2017

.



I The free energy:

pn(β) :=
1
n

log Zn(β;ω)

I The point-to-point partition function

Zn,x (β;ω) := E
(

eβ
∑n

i=1 ω(i,Si )I{Sn=x}

)
. (1.3)

I The polymer endpoint distribution

Pωn,β(Sn = x) :=
Zn,x (β;ω)

Zn(β, ω)
. (1.4)



I To study the behaviors of the the polymer as n → ∞, and
as d and β vary.

I Fluctuation exponents for the polymer endpoint and the free
energy:

EPωn,β (Sn) ∼ n2ζ , VarPωn,β (log Zn(β;ω)) ∼ n2χ,

I P-a.s.
p(β) := lim

n→∞

1
n

log Zn(β;ω).

I At β = 0, the polymer measure is the simple random walk,
the polymer exhibits diffusive behavior. Weak disorder

I For β large, the polymer measure concentrates on paths
with high energy. Strong disorder



I Assume that for β sufficiently small,

λ(β) := log Eeβω(i,x) <∞. (1.5)

Then

p(β) := lim
n→∞

1
n

log Zn(β;ω) = lim
n→∞

1
n

log E (log Zn(β;ω)) < λ(β).

I The normalized partition function

Wn := Zn(β;ω) exp{−nλ(β)}, n ≥ 1. (1.6)

I P-a.s.
W∞ = lim

n→∞
Wn (1.7)

exists and either the polymer is
in weak disorder regime, i .e.,P(W∞ > 0) = 1;

or in strong disorder regime, i .e.,P(W∞ = 0) = 1

I When d = 1, all β > 0 are in the strong disorder regime.



The intermediate disorder regime
I Alberts, Khanin and Quastel (2014) introduced a new disor-

der regime: the intermediate disorder regime.
I d = 1, the environment i.i.d., {Sn} simple symmetric random

walk.
I The scaled partition function:

Zn(n−1/4β;ω)e−nλ(n−1/4β) (d)−→ Z√2β

I The scaled point-to-point partition function
1
2
√

nZnt,
√

nx (n−1/4β;ω)e−nλ(n−1/4β) (d)−→ Z√2β(t , x) in C([0,1]×R),

where Z√2β =
∫
Z√2β(1, x)dx and u(t , x) := Z√2β(t , x) is

the mild solution of the stochastic heat equation ∂tu = 1
2 ∆u +

√
2βuẆ ,

u(0, x) = δx .
(1.8)

I T. Alberts, K. Khanin, and J. Quastel. Intermediate disorder regime for directed polymers in dimension 1 + 1.
Phys. Rev. Lett., 105(9)(2010),090603.

I T. Alberts, K. Khanin, and J. Quastel. The intermediate disorder regime for directed polymers in dimension
1 + 1. Ann. Probab. 42(2014), 1212–1256.

.



I The polymer transition probabilities{
(s, y ; t , x) 7→

√
n

2
Pωn,βn

(Snt = x
√

n|Sns = y
√

n)

}
(d)−→
Z√2β(s, y ; t , x)

∫
Z√2β(t , x ; 1, λ) dλ

Z√2β

for 0 ≤ s < t ≤ 1 and x , y ∈ R.
I Zβ(s, y ; t , x) is the mild solution of the stochastic heat equa-

tion

∂tZβ = 1
2∂xxZβ + βZβẆ , Zβ(s, y ; s, x) = δ0(x − y),



I Under the scaling βn = βn−(1/4+δ) for any δ > 0 (Supercrit-
ical scaling):
I the partition function e−nλ(βn)Zω

n (βn−(1/4+δ)) converges in
probability to 1;

I the endpoint density, under diffusive scaling of space, con-
verges to the standard Gaussian distribution.

I The scalings βn := βn−α for 0 ≤ α < 1/4 (Subcritical scal-
ing):
I The individual terms of the discrete Wiener chaos blow up

as n→∞.



KPZ and Scaling limits

I Since the logarithm of solution of the stochastic heat equa-
tion is the Cole-Hopf solution of Kardar-Parisi-Zhang (KPZ)
equation:

∂th =
1
2

∆h +
1
2

(∇h)2 +
√

2βẆ , (1.9)

I Alberts, Khanin and Quastel (2014) have really derived the
KPZ equation from the scaling limit of the directed polymer.

I These results have been extended to many new models.
.

I J. Quastel, Introduction to KPZ. Current developments in mathematics, 2011, Int. Press, Somerville, MA,
2012, 125–194.

.



I Caravenna, Sun and Zygouras (JEMS, 2017) provided a
unified framework to study the scaling limits of some sta-
tistical mechanics systems.

I Joseph (SPDEAC, 2018) considered an appropriate scal-
ing limit of a model of discrete space-time stochastic heat
equations.

∂tu = −να(−∆)α/2u + σ(u)Ẇ , (1.10)

where σ is Lipschitz continuous.
I Rang (SPA, 2020) considered time independent and space

correlated environment.
I Furthermore, see Corwin, Nica (EJP, 2017), Clement (Ind.

Math, 2019), Shen et. all. (2000) and the references therein.



Model and assumptions
I We consider the directed polymer involving random walks

attracted to stable laws, and time-independent and space-
correlated environment.

Pωn,β(S) :=
1

Zn(β, ω)
eβ

∑n
i=1 ω(i,Si )P(S),

I (A.1). Let the random walk {Sn,n ≥ 0} be in the domain of
attraction of a stable law of index α ∈ (1,2] with period q
Define

p(n, k) := P(Sn = k), n ≥ 0, k ∈ Z,

and

p(nt , kx) := p([nt ], [kx ]), n ≥ 0, k ∈ Z, t ∈ [0,1], x ∈ R

I Let g(x) be the density of symmetric α-stable distribution.

g(t , x) :=
1

t1/αg
( x

t1/α

)
, t > 0, x ∈ R.



I (A.2).The environment ω = {ω(i , x), (i , x) ∈ Z+ × Zd}:

ω(i , x) =
∑

−∞<y<+∞
ayξ(i , x + y), ay ∼ δ|y |−r ,

where 1/2 < r < 1, δ > 0, {ξ(i , x) : i ∈ Z+, x ∈ Z} is
a family of independent identical distribution variables with
E(ξ(i , x)) = 0,E(|ξ(i , x)|2) = 1.

Eeβ|ξ(i,x)| <∞ (1.11)

for β sufficiently small which implies (1.5).

E(ω(i , x)ω(j , y)) = δijγ(x − y),

where γ(z) ∼ 1
2q

(
|z − q|3−2r + |z + q|3−2r − 2|z|3−2r) as

|z| → ∞.
I G. L. Rang. From directed polymers in spatial-correlated environment to stochastic heat equations driven by

fractional noise in 1+1 dimensions. Stoch. Proce. Appl. 130(2020), 3408-3444.

.



Multiple stochastic integral
I Let K (x) = H(2H − 1)|x |2H−2, H = 3

2 − r .
I A time-white spatial-colored noise with the kernel K : a mean

zero Gaussian process {W(φ), φ ∈ S([0,1]× R)} ,

Cov(W(φ),W(ψ)) =

∫ 1

0

∫
R

∫
R
φ(s, x)K (x−y)ψ(s, y)dsdxdy .

I

Lk
H =

{
f : ([0,1]× R)k → R;

‖ f ‖2Lk
H

:=

∫
∆k (0,1]

∫
R2k

f (t,x)
k∏

i=1

K (xi − yi)f (t,y)dtdxdy <∞

}
,

where t = (t1, t2, · · · , tk ), x = (x1, x2, · · · , xk ), y = (y1, y2, · · · , yk ),
and

∆k (0, t ] = {0 = t0 < t1 < t2 < · · · < tk < t}.



I For f ∈ LH , the stochastic integral W(f ) with respect to W
is defined by

IW1 (f ) :=W(f ) :=
∑
n≥1

〈f ,hn〉LH
W(hn).

I

IWk (f⊗k ) :=

∫
([0,1]×R)k

f⊗k (t,x)W⊗k (dtdx) := Hk (W(f )),

I f ∈ Lk
H ,

IWk (f ) :=

∫
([0,1]×R)k

f (t,x)W⊗k (dtdx).

I

Cov(IWj (f ), IWk (g)) =

{
k ! 〈f ,g〉Lk

H
if j = k , f ,g ∈ Lk

H
0 if j 6= k .



Stochastic heat equation

I Consider the following stochastic heat equation:

∂tu = −να(−∆)α/2u +
√

qβuẆ, (1.12)

I The mild solution solution with initial data u0 = u(0, x) can
be written by

u(t , x) =

∫
R

g(t , x − y)u(0, y)dy

+
∞∑

k=1

(
√

qβ)k
∫

∆k (0,t]

∫
Rk

g(t − tk , x − xk )

k∏
i=1

g(ti − ti−1, xi − xi−1)W(dtidxi),

(1.13)

where t0 = 0, x0 = x .



Main results

Theorem 2.1
Assume that (A.1) and (A.2) hold. Set βn = βn−

1
2−

1
2α+ r

α . Then
the scaled point-to-line partition

Zn(βn;ω)e−nλ(βn) (d)−→ u(1,0), (2.1)

and

lim
n→∞

E
((

Zn(βn;ω)e−nλ(βn)
)2
)

= E
(

(u(1,0))2
)
,

where u(t , x) is the mild solution of (1.12) with initial data
u0 = 1.



Theorem 2.2
Let 1

2 < r < min{1, α− 1
2}. Assume that (A.1) and (A.2) hold.

Then the scaled point-to-point partition

1
q

n1/αZnt ,n1/αx (βn;ω)e−nλ(βn) (d)−→ u(t , x), (2.2)

in the sense of the finite dimensional distributions in
C([0,1]× R), and

lim
n→∞

E
((

n1/αZnt ,n1/αx (βn;ω)e−nλ(βn)/q
)2
)

= E
(

(u(t , x))2
)
,

where u(t , x) is the mild solution of (1.12) with initial data
u0(x) = δ(x).



I Furthermore, if

φ(u) := E
(

e
√
−1uS1

)
= 1− να|u|α + h(u), (2.3)

where h(u) = o(|u|α) as |u| → 0, then

1
q

n1/αZnt ,n1/αx (βn;ω)e−nλ(βn) (d)−→ u(t , x), in C([0,1]× R),

(2.4)
where the topology is the supremum norm.



I The polymer transition probabilities{
(s, y ; t , x) 7→ 1

q
n1/αPωn,βn

(Snt = n1/αx |Sns = n1/αy)

}
(d)−→
Z√qβ(s, y ; t , x)

∫
Z√qβ(t , x ; 1, λ) dλ
Z√qβ

for 0 ≤ s < t ≤ 1 and x , y ∈ R.
I Zβ(s, y ; t , x) is the mild solution of the stochastic heat equa-

tion

∂tZβ = −να(−∆x ))α/2Zβ+βZβẆ , Zβ(s, y ; s, x) = δ0(x−y),

I Foondun Joseph and Li (AAP, 2018) studied the approxi-
mation problem of a class of SPDEs, including (1.12), by
systems of interacting stochastic differential equations. Our
results show that the solution u(t , x) of (1.12) is the limit
of the scaled point-to-point partition function of a directed
polymer.

I M. Foondun, M. Joseph, S. T. Li. An approximation result for a class of stochastic heat equations with colored
noise. The Annals of Applied Probability. 28(2018), 2855–2895.

.



Proof of Theorem 2.1
I Consider the modified point-to-line partition function:

Zn(β;ω) = E

(
n∏

i=1

(1 + βω(i ,Si))

)
, (3.1)

I Then

Zn(βn;ω) =1 +
n∑

k=1

βk
n pk

n(t,x)

(
k∏

i=1

ω
(

nti ,n
1
α xi

))
.

where

pk
n(t,x) :=

k∏
i=1

p(n(ti − ti−1),n
1
α (xi − xi−1)), (t,x) ∈ ∆Dk

n,

∆Dk
n :=

{
(t,x) = ((t1, x1), · · · , (tk , xk )) ∈ Dk

n : 0 ≤ t1 < · · · < tk ≤ 1
}

Dn :=

{(
i
n
,

x
n 1
α

)
: x ∈ qZ + il ,1 ≤ i ≤ n

}



I Define

µ(i , x) =
+∞∑
−∞

ayη(i , x + y),

where {η(i , x), (i , x) ∈ Z+ × R} is a family of i.i.d. standard
Gaussian random variables, and independent of {ξ(i , x), (i , x) ∈
Z+ × R}.

I Define

Zn(βn;µ) =1 +
n∑

k=1

βk
n gk (t,x)

(
k∏

i=1

µ
(

nti ,n
1
α xi

))
.

where

gk (t,x) :=
k∏

i=1

g(ti−ti−1, xi−xi−1) (t,x) ∈ ∆k (0,1]×Rk .



I

Zn(βn;ω)
(d)−→ 1+

∞∑
k=1

(β
√

q)k
∫

∆k (0,1]

∫
Rk

gk (s,y)
k∏

i=1

W(dsidyi).

I

lim
n→∞

E
((

Zn(βn;ω)e−nλ(βn)
)
− Zn(βn;ω)

)2
= 0.

I Therefore

Zn(βn;ω)e−nλ(βn) (d)−→ 1+
∞∑

k=1

(β
√

q)k
∫

∆k (0,1]

∫
Rk

gk (s,y)
k∏

i=1

W(dsidyi ).



Proof of Theorem 2.2
I Consider the modified point-to-point partition defined by

Zn,x (β;ω) = E

(
n∏

i=1

(1 + βω(i ,Si)) I{Sn=x}

)
.

I Then

Zn,n1/αx (βn;ω)

=p(n,n1/αx)

1 +
n∑

k=1

βk
n

∑
(t,x)∈∆Dk

n

ψk
n,x (t,x)

k∏
i=1

ω(nti ,n1/αxi)


where

ψk
n,x (t,x) =

p(n(1− tk ),n1/α(x − xk ))

p(n,n1/αx)

k∏
i=1

p(n(ti−ti−1),n1/α(xi−xi−1)).



I Denote by

zn(t , x) := n
1
αZnt ,n1/αx (βn;ω), z̄n(t , x) = Pzn(t , x)

where P is the transition probability of {Sn}.
I Then

zn(t , x) = pn(t , x)+β

∫ t

0

∫
R

pn(t−s, y−x)zn(s, y)ωn(s, y)dsdy .

(3.2)
where

pn(t , x) = n
1
αp([nt ], [n

1
α x ])

ωn(s, y) = n
1
2−

1
2α+ r

αω([ns], [n
1
α y ]).



I Convergence of finite dimensional distributions:
Proof of Theorem 2.1

I Tightness:
I

sup
t∈[ε,1],x∈R

E
(
z2m

n (t , x)
)
≤ Cm, sup

t∈[ε,1]

∫
R

E
(
z2m

n (t , x)
)

dx ≤ Cm

I For all t ≥ ε,

E (zn(t + h, x + δ)− zn(t , x))2m

≤Cm

(
h{(1− 1

α )(2r−1)m}∧{ m
α} + δ{(1− 1

α )(2r−1)m}∧{ m
α}
)
.

Choose m large enough such that {(1− 1
α )(2r−1)m}∧{m

α } >
2.
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