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Directed polymer

» Directed polymer: a random probability distribution on the
path space (Z9)%+

w ._ 1 BN, w(i,S)
Py 5(S) = Zn(,B,w)e P(S), (1.1)
» where 5 > 0 is the inverse temperature,
> S={S,,n>0}isarandom walk in Z9 on ((Z9)%*+, FS,P),
> w = {w(i,x),(i,x) € Zy x 29} is an environment which is a
family of identically distributed random variables on (2, 7%, P),
> Z,(B,w) is the point-to-line partition function defined by

Zy(Biw) :=E (eﬂ 2 w(i’si)) . (1.2)

» D. A. Huse, C. L. Henley. Pinning and roughening of domain walls in Ising systems due to random impurities.
Phys. Rev. Lett. 54(1985), 2708-2711.

» J. Z. Imbrie, T. Spencer. Diffusion of directed polymers in a random environment. J. Stat. Phys. 52(1988),
609-626.

» F. Comets. Directed polymers in random environments, Lecture Notes in Mathematics 2175. Springer, 2017



» The free energy:

1
Pn(B) := n log Zn(8; w)
» The point-to-point partition function
anx(ﬁ; W) =E (eﬁ 27:1 w(i’si)l{sn:x}) .

» The polymer endpoint distribution

w Zn,x /3;
n(Sn=X) = Zn((ﬁ,(«:;)



To study the behaviors of the the polymer as n — oo, and
as d and 3 vary.

Fluctuation exponents for the polymer endpoint and the free
energy:

Ep (Sn) ~ n?S, Varp. (log Zp(6; w)) ~ X,

P-a.s. ’

p(B) = lim —log Zn(f;w).
At g = 0, the polymer measure is the simple random walk,
the polymer exhibits diffusive behavior. Weak disorder

For g large, the polymer measure concentrates on paths
with high energy. Strong disorder



Assume that for g sufficiently small,

A(B) := log Ee? (%) < oo (1.5)

pB) = Jim 1 log Zy(6i) = im | log E (g Zu(6)) < A(5)
The normalized partition function
W = Zn(B; w) exp{—nA(B)}, n> 1. (1.6)

P-a.s.
W = lim W, (1.7)
n—oo

exists and either the polymer is
in weak disorder regime, i.e,P(Wsx >0)=1;
or in strong disorder regime, i.e.,P(W, =0) =1

When d =1, all 3 > 0 are in the strong disorder regime.



The intermediate disorder regime
» Alberts, Khanin and Quastel (2014) introduced a new disor-
der regime: the intermediate disorder regime.
»> d =1, the environmenti.i.d., {S,} simple symmetric random
walk.
» The scaled partition function:

_ _o(n—1/4g) (d
Z,(n~ 143, w)e= ™) LN Z /35

» The scaled point-to-point partition function
1 _ _ —1/4 d .
5V 2 14 5;0)e ™ s 2 o (8x) i C([0, 1]xR),

where Z 5, = I 2, z5(1, x)dx and u(t,x) := Z ;54(t, x) is
the mild solution of the stochastic heat equation

ou = Au+v28uW,
(1.8)
u(0, x) = dx.
» T. Alberts, K. Khanin, and J. Quastel. Intermediate disorder regime for directed polymers in dimension 1 + 1.
Phys. Rev. Lett., 105(9)(2010),090603.

> T. Alberts, K. Khanin, and J. Quastel. The intermediate disorder regime for directed polymers in dimension
1+ 1. Ann. Probab. 42(2014), 1212-1256.



» The polymer transition probabilities

{(S7y;t,x) f n@n(snt—x\fsns—}/\r)}

ﬂZ\/Qﬂ(s,y; t,X IZﬂﬂ(t,X,‘l,)\)d)\
228

foro<s<t<tandx,yeR.

> Z3(s,y;t, x) is the mild solution of the stochastic heat equa-
tion

hZs = Y0 Zs + B2 W, Z5(8,¥:8,X) = do(x — ),



» Under the scaling 8, = gn—(1/4+9) for any § > 0 (Supercrit-
ical scaling):
> the partition function e="(%)Z«(3n—(1/4+9)) converges in
probability to 1;
» the endpoint density, under diffusive scaling of space, con-
verges to the standard Gaussian distribution.

» The scalings g, := gn=* for 0 < o < 1/4 (Subcritical scal-
ing):
» The individual terms of the discrete Wiener chaos blow up
as n — oo.



KPZ and Scaling limits

» Since the logarithm of solution of the stochastic heat equa-
tion is the Cole-Hopf solution of Kardar-Parisi-Zhang (KPZ)
equation:

1 1 .
Oth = 5 Ah+ E(Vh)2 +V23W, (1.9)

» Alberts, Khanin and Quastel (2014) have really derived the
KPZ equation from the scaling limit of the directed polymer.

» These results have been extended to many new models.

» J. Quastel, Introduction to KPZ. Current developments in mathematics, 2011, Int. Press, Somerville, MA,
2012, 125-194.



Caravenna, Sun and Zygouras (JEMS, 2017) provided a
unified framework to study the scaling limits of some sta-
tistical mechanics systems.

Joseph (SPDEAC, 2018) considered an appropriate scal-
ing limit of a model of discrete space-time stochastic heat
equations.

AU = —vo(—A)2u+ o (U)W, (1.10)

where ¢ is Lipschitz continuous.
Rang (SPA, 2020) considered time independent and space
correlated environment.

Furthermore, see Corwin, Nica (EJP, 2017), Clement (Ind.
Math, 2019), Shen et. all. (2000) and the references therein.



Model and assumptions

» We consider the directed polymer involving random walks
attracted to stable laws, and time-independent and space-
correlated environment.

’
ns(S) =

B30 w(i,S))
e’ =1 P(S
Zn(ﬁﬂ”) ( )

)

> (A.1). Let the random walk {S,, n > 0} be in the domain of
attraction of a stable law of index a € (1, 2] with period q
Define

p(n, k) :=P(Sy = k), n>0,kezZ,
and
p(nt, kx) := p([nt], [kx]), n>0,keZ te0,1], xR
> Let g(x) be the density of symmetric a-stable distribution.

1 X



> (A.2).The environment w = {w(i, x), (i, x) € Z; x Z9}:
wi, )= > agli,x+y), a~dyl,
—oo<y<+o0

where 1/2 < r < 1,6 > 0,{¢(i,x) : i € Zy,x € Z} is
a family of independent identical distribution variables with

E(¢(i, x)) = 0,E(J¢(7, ) ?) = 1.
Ee?lE0 < oo (1.11)
for g sufficiently small which implies (1.5).
E(w(i, X)w(j, ¥)) = djy(x = ),

where ~(z) ~ 217q (12— qI®2 + |z + g2 —2|z]*2) as
|z| — oo.

» G. L. Rang. From directed polymers in spatial-correlated environment to stochastic heat equations driven by
fractional noise in 1+1 dimensions. Stoch. Proce. Appl. 130(2020), 3408-3444.



Multiple stochastic integral
> Let K(x) = H2H — 1)|x?F2, H=3 — .
» Atime-white spatial-colored noise with the kernel K: a mean
zero Gaussian process {W(¢), ¢ € S([0,1] x R)},

Cov(W / //d) S, X)K(x—y)(s, y)dsdxdy.

ck :{f; ([0,1] x R)¥ — R;
| f Hﬁk = / f(t,x) [ [ K(xi — yi)f(t, y)dtdxdy < oo
Ak(0,1] Jrek pie

wheret = (t17t27"' ,tk),X: (X17X27"' 7Xk):y: (}/1aYZ>"' 7yk)a
and

A0, ] ={0=t <t <b<- - <Il<t}



» For f € Ly, the stochastic integral W(f) with respect to W
is defined by

RY(f) = W(F) =Y " (F, hn) o, W(hn).

n>1
| 2
PV(FeK) = / FEK (1, X)W (dtdx) := He(W(F)),
([0,1]xR)*
> fe Lk,
V() = / (8, X)WK (dtdx).
([0,1]xR)k

>

. o k
k!<fag>cf, ifj=k, f,gecl]

Cov(ljw(f), ,)(/V(g)) = { 0 if j # k.



Stochastic heat equation

» Consider the following stochastic heat equation:
U = —vo(—D)2u+ /qBUW, (1.12)

» The mild solution solution with initial data vy = u(0, x) can
be written by

u(t, x) = / g(t.x — y)u(0, y)dy

+Zfﬁ /A

t— b
01 I e X=X (4 43

[T ot — tict. xi — xi_1)W(dtidx;),

where fy = 0, xg = X.



Main results

Theorem 2.1 1
Assume that (A.1) and (A.2) hold. Set 3, = 5,7—5—5 &. Then
the scaled point-to-line partition

Zo(B w)e™E) 194 ), 2.1)

and

Jim E ((Zn(ﬁn;w)e—”wn))z) —E ((u(1 : 0))2) ,

where u(t, x) is the mild solution of (1.12) with initial data
U =1.



Theorem 2.2

Let 3 < r < min{1,a — }}. Assume that (A.1) and (A.2) hold.
Then the scaled point-to-point partition

1 d
anwz,,m1 o (B )™ Oy ), (2.2)

in the sense of the finite dimensional distributions in
C([0,1] x R), and

i B (0 Zo st 010)°) = E (@(t0)F),

where u(t, x) is the mild solution of (1.12) with initial data
Up(x) = o(x).



» Furthermore, if
o(u) :=E (eﬁ“&) =1 — va|ul® + h(u), (2.3)

where h(u) = o(|u|*) as |u| — 0, then

1 .
O Z (B w)e ™) 1Dyt x)in (10, 1] x R),

q
(2.4)
where the topology is the supremum norm.



The polymer transition probabilities

1
{(37}/; t,x) 6n1/ap°r;’5n(sm = n”ax]Sns = n1/ay)}

ﬂz\/aﬁ(s,y; t,X)fZ\/aﬁ(t,X,1,)\)d)\
2. /ap
for0<s<t<tandx,yecR.

Z3(s, y; t, x) is the mild solution of the stochastic heat equa-
tion

HZp = —va(—Dx))Y2 254825 W, Z5(8,¥; 8, x) = do(x—Y),

Foondun Joseph and Li (AAP, 2018) studied the approxi-
mation problem of a class of SPDEs, including (1.12), by
systems of interacting stochastic differential equations. Our
results show that the solution u(t, x) of (1.12) is the limit
of the scaled point-to-point partition function of a directed
polymer.

M. Foondun, M. Joseph, S. T. Li. An approximation result for a class of stochastic heat equations with colored
noise. The Annals of Applied Probability. 28(2018), 2855—-2895.



Proof of Theorem 2.1
» Consider the modified point-to-line partition function:

3n(B;w) =E (H (1 + Bw(i, s,-))) : (3.1)

i=1
» Then

3n(Bn;w) =1 +Zﬁnpn(t X (f[w (nt,-,nlx,-)) .

k=1

where
k 1

pi(t.x) = [T p(n(t — ti1),n= (3 — xi—1)),  (t,x) € ADy,
i=1

ADE = {(t,x) = ((t,x1), -+, (b X)) €EDE0<t <+ <t <1}

Dn;={<’,’i) X eqZ+il1 gign}
n na



» Define

“+oo
(i, x) =Y ayn(i.x +y),

where {n(i, x), (i, x) € Z; x R} is a family of i.i.d. standard
Gaussian random variables, and independent of {£(/, x), (i, x) €
Z+ X R}

» Define
n k ;
3n(Bnip) =1+ Z B,’f,gk(t, X) (H W (nt,-, naX,'>> .
k=1 i=1
where

gk(t,x) := Hg(t,-—t,-,1,x,-—x,',1) (t,x) € Ak(O, 1]><]Rk.



k

3B w) 2 1+> (8v9)" / ak(s.y) [ [W(dsidyy).

k
k=1 Ax(0,1] /R i1

im E ((Zn(Bmiw)e™ ) ~ 3n(Briw)) =0,

n—oo
» Therefore

k

Zi(riw)e ™) D 143 (5va)t [ a(s.y) [[Widsidy).

k=1 A(0,1] /R i—1



Proof of Theorem 2.2

» Consider the modified point-to-point partition defined by

3nx(Biw) = (H + Buw(i, §;)) Iys,= x}>
i=1

» Then

3n,n1/ax(/8nlw)
:p(n7 n1/a (1 + Z/Bn Z 1/}I7X t X H (ntia n1/axi))
k=1 (tx)eADE
where

_ 1aly _ k
oy T ptotu )./

i=1

wﬁ,x(ta X) =




» Denote by

Zo(t,X) = N 3 oy (Bri ), Zalt, X) = Pzn(t, X)

where P is the transition probability of {S,}.
» Then

t
20(t.) = Pult3)+6 [ [ palt=5.y-x)Za(5.y)un(s.y)dsdy.
0 JR
(3.2)
where 1 1
Pa(t,x) = ni p([nt], [+ x])

wn(s,y) = N2~z ww([ns], [ y]).



» Convergence of finite dimensional distributions:
Proof of Theorem 2.1

» Tightness:
>

sup  E(Z3"(t,x)) < Cm, sup /E(z,z,'”(t, x))dx < Cn
R

tele,1],x€R tefe 1]
> Forallt > e,
E (2(t + h, X + ) — z(t, x))*"
<Cp (h{ﬁ—é)(?r—ﬂm}A{%} n 5{(1—g)<2r—1>m}A{£}) _

Choose m large enough such that {(1—1)(2r—1)m}n{Z} >
2.
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