Scaling limits of directed polymers in spatial-correlated environment

Fuqing Gao

Wuhan University

The 16th Workshop on Markov Processes and Related Topics

CSU and BNU, July 12-16, 2021

Joint work with Yingxia Chen

KO KKO K S A B K S B K V S A V K S B K S B K S A V S B K S B K S B K S B K S B K S B K S B K S B K S B K S B K

Outline

[Introduction](#page-2-0)

[Background](#page-2-0) [Model and assumptions](#page-11-0) [Stochastic heat equation](#page-13-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

[Main results](#page-16-0)

[Sketch of Proof](#page-20-0)

Directed polymer

.

 \triangleright Directed polymer: a random probability distribution on the path space $(\mathbb{Z}^d)^{\mathbb{Z}_+}$

$$
\mathbb{P}^{\omega}_{n,\beta}(S) := \frac{1}{Z_n(\beta,\omega)} e^{\beta \sum_{i=1}^n \omega(i,S_i)} \mathbb{P}(S), \qquad (1.1)
$$

- If where $\beta > 0$ is the inverse temperature,
- ▶ $S = \{S_n, n \ge 0\}$ is a random walk in \mathbb{Z}^d on $((\mathbb{Z}^d)^{\mathbb{Z}_+}, \mathcal{F}^S, \mathbb{P}),$
- $\blacktriangleright \omega = \{\omega(i, x), (i, x) \in \mathbb{Z}_+ \times \mathbb{Z}^d\}$ is an environment which is a family of identically distributed random variables on (Ω, F ^Ω, **P**),
- \blacktriangleright $Z_n(\beta,\omega)$ is the point-to-line partition function defined by

$$
Z_n(\beta;\omega):=\mathbb{E}\left(e^{\beta\sum_{i=1}^n\omega(i,S_i)}\right).
$$
 (1.2)

KORK ERKER ADAM ADA

- ▶ D. A. Huse, C. L. Henley. Pinning and roughening of domain walls in Ising systems due to random impurities. *Phys. Rev. Lett.* 54(1985), 2708-2711.
- J. Z. Imbrie, T. Spencer. Diffusion of directed polymers in a random environment. *J. Stat. Phys.* 52(1988), 609-626.
- ^I F. Comets. *Directed polymers in random environments*, *Lecture Notes in Mathematics 2175*. Springer, 2017

$$
\blacktriangleright
$$
 The free energy:

$$
p_n(\beta) := \frac{1}{n} \log Z_n(\beta; \omega)
$$

 \blacktriangleright The point-to-point partition function

$$
Z_{n,x}(\beta;\omega):=\mathbb{E}\left(e^{\beta\sum_{i=1}^n\omega(i,S_i)}I_{\{S_n=x\}}\right).
$$
 (1.3)

 \blacktriangleright The polymer endpoint distribution

$$
\mathbb{P}_{n,\beta}^{\omega}(S_n = x) := \frac{Z_{n,x}(\beta;\omega)}{Z_n(\beta,\omega)}.
$$
 (1.4)

- **If** To study the behaviors of the the polymer as $n \to \infty$, and as *d* and β vary.
- \blacktriangleright Fluctuation exponents for the polymer endpoint and the free energy:

$$
E_{\mathbb{P}_{n,\beta}^{\omega}}(S_n) \sim n^{2\zeta}, \quad \text{Var}_{\mathbb{P}_{n,\beta}^{\omega}}(\log Z_n(\beta;\omega)) \sim n^{2\chi},
$$

 \blacktriangleright **P**-*a*.*s*.

$$
p(\beta) := \lim_{n \to \infty} \frac{1}{n} \log Z_n(\beta; \omega).
$$

- At $\beta = 0$, the polymer measure is the simple random walk, the polymer exhibits diffusive behavior. Weak disorder
- For β large, the polymer measure concentrates on paths with high energy. Strong disorder

ID Assume that for β sufficiently small,

$$
\lambda(\beta) := \log \mathbf{E} e^{\beta \omega(i, x)} < \infty. \tag{1.5}
$$

Then

$$
p(\beta):=\lim_{n\to\infty}\frac{1}{n}\log Z_n(\beta;\omega)=\lim_{n\to\infty}\frac{1}{n}\log\mathsf{E}\left(\log Z_n(\beta;\omega)\right)<\lambda(\beta).
$$

 \blacktriangleright The normalized partition function

$$
W_n := Z_n(\beta;\omega) \exp\{-n\lambda(\beta)\},\; n \ge 1. \tag{1.6}
$$

 \blacktriangleright **P**-*a.s.*

$$
W_{\infty} = \lim_{n \to \infty} W_n \tag{1.7}
$$

exists and either the polymer is

 $\sqrt{ }$ $\left| \right|$ in weak disorder regime, $i.e., \mathsf{P}(W_\infty>0)=1;$

 \mathcal{L} or in strong disorder regime, *i*.*e*., **P**(*W*[∞] = 0) = 1

IDED Wh[e](#page-27-0)n $d = 1$, all $\beta > 0$ are in the stron[g d](#page-4-0)[is](#page-6-0)[o](#page-4-0)[rd](#page-5-0)e[r r](#page-0-0)[eg](#page-27-0)[im](#page-0-0)e[.](#page-0-0)

The intermediate disorder regime

.

- ▶ Alberts, Khanin and Quastel (2014) introduced a new disorder regime: the intermediate disorder regime.
	- \blacktriangleright $d = 1$, the environment i.i.d., $\{S_n\}$ simple symmetric random walk.
	- \blacktriangleright The scaled partition function:

$$
Z_n(n^{-1/4}\beta;\omega)e^{-n\lambda(n^{-1/4}\beta)} \xrightarrow{(d)} \mathcal{Z}_{\sqrt{2}\beta}
$$

 \blacktriangleright The scaled point-to-point partition function

$$
\frac{1}{2}\sqrt{n}Z_{nt,\sqrt{n}x}(n^{-1/4}\beta;\omega)e^{-n\lambda(n^{-1/4}\beta)}\xrightarrow{(d)}\mathcal{Z}_{\sqrt{2}\beta}(t,x) \text{ in } C([0,1]\times\mathbb{R}),
$$

where $\mathcal{Z}_{\sqrt{2}\beta} = \int \mathcal{Z}_{\sqrt{2}\beta}(1,x)dx$ and $u(t,x) := \mathcal{Z}_{\sqrt{2}\beta}(t,x)$ is the mild solution of the stochastic heat equation

$$
\begin{cases}\n\partial_t u = \frac{1}{2} \Delta u + \sqrt{2} \beta u \dot{W}, \\
u(0, x) = \delta_x.\n\end{cases}
$$
\n(1.8)

KORK ERKER ADAM ADA

- \blacktriangleright T. Alberts, K. Khanin, and J. Quastel. Intermediate disorder regime for directed polymers in dimension $1 + 1$. *Phys. Rev. Lett.*, 105(9)(2010),090603.
- T. Alberts, K. Khanin, and J. Quastel. The intermediate disorder regime for directed polymers in dimension 1 + 1. *Ann. Probab.* 42(2014), 1212–1256.

 \blacktriangleright The polymer transition probabilities

$$
\left\{ (s, y; t, x) \mapsto \frac{\sqrt{n}}{2} \mathbf{P}_{n, \beta_n}^{\omega}(S_{nt} = x\sqrt{n}|S_{ns} = y\sqrt{n}) \right\}
$$

$$
\xrightarrow{\left(d\right)} \frac{\mathcal{Z}_{\sqrt{2}\beta}(s, y; t, x) \int \mathcal{Z}_{\sqrt{2}\beta}(t, x; 1, \lambda) d\lambda}{\mathcal{Z}_{\sqrt{2}\beta}}
$$

for $0 \leq s < t \leq 1$ and $x, y \in \mathbb{R}$.

 \triangleright $\mathcal{Z}_{\beta}(s, y; t, x)$ is the mild solution of the stochastic heat equation

$$
\partial_t \mathcal{Z}_{\beta} = \tfrac{1}{2} \partial_{xx} \mathcal{Z}_{\beta} + \beta \mathcal{Z}_{\beta} \dot{W}, \qquad \mathcal{Z}_{\beta}(\mathbf{s}, \mathbf{y}; \mathbf{s}, \mathbf{x}) = \delta_0(\mathbf{x} - \mathbf{y}),
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

- ► Under the scaling $\beta_n = \beta n^{-(1/4+\delta)}$ for any $\delta > 0$ (Supercritical scaling):
	- **►** the partition function $e^{-n\lambda(\beta_n)}Z_n^{\omega}(\beta n^{-(1/4+\delta)})$ converges in probability to 1;
	- \blacktriangleright the endpoint density, under diffusive scaling of space, converges to the standard Gaussian distribution.
- **►** The scalings $\beta_n := \beta n^{-\alpha}$ for $0 \le \alpha < 1/4$ (Subcritical scaling):
	- \blacktriangleright The individual terms of the discrete Wiener chaos blow up as $n \to \infty$.

KORK ERKER ADAM ADA

KPZ and Scaling limits

.

.

 \triangleright Since the logarithm of solution of the stochastic heat equation is the Cole-Hopf solution of Kardar-Parisi-Zhang (KPZ) equation:

$$
\partial_t h = \frac{1}{2} \Delta h + \frac{1}{2} (\nabla h)^2 + \sqrt{2} \beta \dot{W}, \qquad (1.9)
$$

KORKARA KERKER DAGA

- \blacktriangleright Alberts, Khanin and Quastel (2014) have really derived the KPZ equation from the scaling limit of the directed polymer.
- \blacktriangleright These results have been extended to many new models.

^I J. Quastel, *Introduction to KPZ*. Current developments in mathematics, 2011, Int. Press, Somerville, MA, 2012, 125–194.

- ▶ Caravenna, Sun and Zygouras (JEMS, 2017) provided a unified framework to study the scaling limits of some statistical mechanics systems.
- ▶ Joseph (SPDEAC, 2018) considered an appropriate scaling limit of a model of discrete space-time stochastic heat equations.

$$
\partial_t u = -\nu_\alpha (-\Delta)^{\alpha/2} u + \sigma(u) \dot{W}, \qquad (1.10)
$$

where σ is Lipschitz continuous.

- ▶ Rang (SPA, 2020) considered time independent and space correlated environment.
- ▶ Furthermore, see Corwin, Nica (EJP, 2017), Clement (Ind. Math, 2019), Shen et. all. (2000) and the references therein.

Model and assumptions

 \triangleright We consider the directed polymer involving random walks attracted to stable laws, and time-independent and spacecorrelated environment.

$$
\mathbb{P}^{\omega}_{n,\beta}(S):=\frac{1}{Z_n(\beta,\omega)}e^{\beta\sum_{i=1}^n\omega(i,S_i)}\mathbb{P}(S),
$$

▶ (A.1). Let the random walk $\{S_n, n \ge 0\}$ be in the domain of attraction of a stable law of index $\alpha \in (1, 2]$ with period q Define

$$
p(n,k):=\mathbb{P}(S_n=k),\qquad n\geq 0,\;k\in\mathbb{Z},
$$

and

p(*nt*, *kx*) := *p*([*nt*], [*kx*]), $n \ge 0$, $k \in \mathbb{Z}$, $t \in [0, 1]$, $x \in \mathbb{R}$

Exected Let $g(x)$ be the density of symmetric α -stable distribution.

$$
g(t,x):=\frac{1}{t^{1/\alpha}}g\left(\frac{x}{t^{1/\alpha}}\right),\ \ t>0,\ x\in\mathbb{R}.
$$

 \blacktriangleright (A.2). The environment $ω = \{ω(i, x), (i, x) \in \mathbb{Z}_+ \times \mathbb{Z}^d\}$:

$$
\omega(i,x)=\sum_{-\infty< y<+\infty}a_y\xi(i,x+y),\qquad a_y\sim \delta|y|^{-r},
$$

where $1/2 < r < 1, \delta > 0, \{\xi(i, x) : i \in \mathbb{Z}_+, x \in \mathbb{Z}\}\)$ is a family of independent identical distribution variables with **E**($\xi(i, x)$) = 0, **E**($|\xi(i, x)|^2$) = 1.

$$
\mathsf{E}e^{\beta|\xi(i,x)|} < \infty \tag{1.11}
$$

KEL KALEYKEN E YAN

for β sufficiently small which implies [\(1.5\)](#page-5-1).

.

$$
\mathsf{E}(\omega(i, x)\omega(j, y)) = \delta_{ij}\gamma(x - y),
$$

where $\gamma(z) \sim \frac{1}{2q}(|z - q|^{3-2r} + |z + q|^{3-2r} - 2|z|^{3-2r})$ as $|z| \to \infty$.

▶ G. L. Rang. From directed polymers in spatial-correlated environment to stochastic heat equations driven by fractional noise in 1+1 dimensions. *Stoch. Proce. Appl.* 130(2020), 3408-3444.

Multiple stochastic integral

 \blacktriangleright

- **►** Let $K(x) = H(2H-1)|x|^{2H-2}$, $H = \frac{3}{2} r$.
- \triangleright A time-white spatial-colored noise with the kernel K : a mean zero Gaussian process $\{W(\phi), \phi \in \mathcal{S}([0,1] \times \mathbb{R})\}$,

$$
Cov(\mathcal{W}(\phi), \mathcal{W}(\psi)) = \int_0^1 \int_{\mathbb{R}} \int_{\mathbb{R}} \phi(s, x) K(x-y) \psi(s, y) ds dx dy.
$$

$$
\mathcal{L}_{H}^{k} = \Big\{ f : ([0, 1] \times \mathbb{R})^{k} \to \mathbb{R};
$$

$$
\| f \|_{\mathcal{L}_{H}^{k}}^{2} := \int_{\Delta_{k}(0, 1]} \int_{\mathbb{R}^{2k}} f(\mathbf{t}, \mathbf{x}) \prod_{i=1}^{k} K(x_{i} - y_{i}) f(\mathbf{t}, \mathbf{y}) \, d\mathbf{t} \, d\mathbf{x} \, d\mathbf{y} < \infty
$$

where $\mathbf{t} = (t_1, t_2, \dots, t_k), \mathbf{x} = (x_1, x_2, \dots, x_k), \mathbf{y} = (y_1, y_2, \dots, y_k),$ and

$$
\Delta_k(0,t] = \{0 = t_0 < t_1 < t_2 < \cdots < t_k < t\}.
$$

► For $f \in \mathcal{L}_H$, the stochastic integral $\mathcal{W}(f)$ with respect to \mathcal{W} is defined by

$$
I_1^{\mathcal{W}}(f) := \mathcal{W}(f) := \sum_{n \geq 1} \langle f, h_n \rangle_{\mathcal{L}_H} \mathcal{W}(h_n).
$$

$$
J_k^{\mathcal{W}}(f^{\otimes k}) := \int_{([0,1]\times\mathbb{R})^k} f^{\otimes k}(\mathbf{t}, \mathbf{x}) \mathcal{W}^{\otimes k}(\mathrm{d} \mathbf{t} \mathrm{d} \mathbf{x}) := \mathrm{H}_k(\mathcal{W}(f)),
$$

$$
\blacktriangleright \ \ f\in\mathcal{L}_{H}^{k},
$$

 \blacktriangleright

 \blacktriangleright

$$
I_{k}^{\mathcal{W}}(f) := \int_{([0,1]\times\mathbb{R})^k} f(\mathbf{t}, \mathbf{x}) \mathcal{W}^{\otimes k}(\mathrm{d} \mathbf{t} \mathrm{d} \mathbf{x}).
$$

$$
Cov(l_j^{\mathcal{W}}(f), l_k^{\mathcal{W}}(g)) = \begin{cases} k! \langle f, g \rangle_{\mathcal{L}_H^k} & \text{if } j = k, \quad f, g \in \mathcal{L}_H^k \\ 0 & \text{if } j \neq k. \end{cases}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ .. 할 .. 990

Stochastic heat equation

 \triangleright Consider the following stochastic heat equation:

$$
\partial_t u = -\nu_\alpha (-\Delta)^{\alpha/2} u + \sqrt{q} \beta u \dot{\mathcal{W}}, \qquad (1.12)
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

If The mild solution solution with initial data $u_0 = u(0, x)$ can be written by

$$
u(t, x) = \int_{\mathbb{R}} g(t, x - y) u(0, y) dy + \sum_{k=1}^{\infty} (\sqrt{q}\beta)^k \int_{\Delta_k(0, t]} \int_{\mathbb{R}^k} g(t - t_k, x - x_k) \quad (1.13)
$$

$$
\prod_{i=1}^k g(t_i - t_{i-1}, x_i - x_{i-1}) \mathcal{W}(\mathrm{d}t_i \mathrm{d}x_i),
$$

where $t_0 = 0, x_0 = x$.

Main results

Theorem 2.1 *Assume that (A.1) and (A.2) hold. Set* $\beta_n = \beta n^{-\frac{1}{2} - \frac{1}{2\alpha} + \frac{1}{\alpha}}$ *. Then the scaled point-to-line partition*

$$
Z_n(\beta_n; \omega) e^{-n\lambda(\beta_n)} \xrightarrow{(d)} u(1,0), \qquad (2.1)
$$

KORKARA KERKER DAGA

and

$$
\lim_{n\to\infty} \mathbf{E}\left(\left(Z_n(\beta_n;\omega)e^{-n\lambda(\beta_n)} \right)^2 \right) = \mathbf{E}\left(\left(u(1,0) \right)^2 \right),
$$

where u(*t*, *x*) *is the mild solution of [\(1.12\)](#page-15-0) with initial data* $u_0 = 1$.

Theorem 2.2 *Let* $\frac{1}{2} < r < \min\{1, \alpha - \frac{1}{2}\}$ $\frac{1}{2}$ }. Assume that (A.1) and (A.2) hold. *Then the scaled point-to-point partition*

$$
\frac{1}{q}n^{1/\alpha}Z_{nt,n^{1/\alpha}x}(\beta_n;\omega)e^{-n\lambda(\beta_n)}\xrightarrow{(d)}u(t,x),\qquad(2.2)
$$

KORK ERKER ADAM ADA

in the sense of the finite dimensional distributions in $C([0, 1] \times \mathbb{R})$, and

$$
\lim_{n\to\infty} \mathbf{E}\left(\left(n^{1/\alpha} Z_{nt,n^{1/\alpha}x}(\beta_n;\omega) e^{-n\lambda(\beta_n)}/q \right)^2 \right) = \mathbf{E}\left(\left(u(t,x) \right)^2 \right),
$$

where u(*t*, *x*) *is the mild solution of [\(1.12\)](#page-15-0) with initial data* $u_0(x) = \delta(x)$.

\blacktriangleright Furthermore, if

$$
\phi(u) := \mathbb{E}\left(e^{\sqrt{-1}uS_1}\right) = 1 - \nu_\alpha |u|^\alpha + h(u), \tag{2.3}
$$

KID KARA KE KA E KO GO

where $h(u) = o(|u|^\alpha)$ as $|u| \to 0$, then

$$
\frac{1}{q}n^{1/\alpha}Z_{nt,n^{1/\alpha}x}(\beta_n;\omega)e^{-n\lambda(\beta_n)}\xrightarrow{(d)}u(t,x),\ \ \text{in}\ C([0,1]\times\mathbb{R}),\tag{2.4}
$$

where the topology is the supremum norm.

 \blacktriangleright The polymer transition probabilities

$$
\left\{ (s, y; t, x) \mapsto \frac{1}{q} n^{1/\alpha} \mathbf{P}_{n, \beta_n}^{\omega} (S_{nt} = n^{1/\alpha} x | S_{ns} = n^{1/\alpha} y) \right\}
$$

$$
\xrightarrow{\langle d \rangle} \frac{\mathcal{Z}_{\sqrt{q}\beta}(s, y; t, x) \int \mathcal{Z}_{\sqrt{q}\beta}(t, x; 1, \lambda) d\lambda}{\mathcal{Z}_{\sqrt{q}\beta}}
$$

for $0 \leq s \leq t \leq 1$ and $x, y \in \mathbb{R}$.

.

 \triangleright $\mathcal{Z}_{\beta}(s, v; t, x)$ is the mild solution of the stochastic heat equation

$$
\partial_t \mathcal{Z}_{\beta} = -\nu_{\alpha}(-\Delta_x))^{\alpha/2} \mathcal{Z}_{\beta} + \beta \mathcal{Z}_{\beta} W, \ \mathcal{Z}_{\beta}(\mathbf{s}, \mathbf{y}; \mathbf{s}, \mathbf{x}) = \delta_0(\mathbf{x} - \mathbf{y}),
$$

 \triangleright Foondun Joseph and Li (AAP, 2018) studied the approximation problem of a class of SPDEs, including [\(1.12\)](#page-15-0), by systems of interacting stochastic differential equations. Our results show that the solution $u(t, x)$ of [\(1.12\)](#page-15-0) is the limit of the scaled point-to-point partition function of a directed polymer.

IM. Foondun, M. Joseph, S. T. Li. An approximation result for a class of stochastic heat equations with colored noise. *The Annals of Applied Probability*. 28(2018), 2855–2895.

Proof of Theorem [2.1](#page-16-1)

 \triangleright Consider the modified point-to-line partition function:

$$
\mathfrak{Z}_n(\beta;\omega)=\mathbb{E}\left(\prod_{i=1}^n\left(1+\beta\omega(i,\mathbf{S}_i)\right)\right),\qquad(3.1)
$$

i=1

 $\omega\left(nt_i, n^{\frac{1}{\alpha}}x_i\right)$

.

$$
\mathfrak{Z}_n(\beta_n;\omega) = 1 + \sum_{k=1}^n \beta_n^k \rho_n^k(\mathbf{t}, \mathbf{x}) \left(\prod_{k=1}^k \right)
$$

k=1

$$
\quad \text{where} \quad
$$

 \blacktriangleright Then

$$
\rho_n^k(\mathbf{t}, \mathbf{x}) := \prod_{i=1}^k p(n(t_i - t_{i-1}), n^{\frac{1}{\alpha}}(x_i - x_{i-1})), \quad (\mathbf{t}, \mathbf{x}) \in \Delta \mathbb{D}_n^k,
$$

$$
\Delta \mathbb{D}_n^k := \big\{ (\mathbf{t}, \mathbf{x}) = ((t_1, x_1), \cdots, (t_k, x_k)) \in \mathbb{D}_n^k : 0 \leq t_1 < \cdots < t_k \leq 1 \big\}
$$

$$
\mathbb{D}_n := \left\{ \left(\frac{i}{n}, \frac{x}{n^{\frac{1}{\alpha}}} \right) : x \in q\mathbb{Z} + i, 1 \leq i \leq n \right\}
$$

$$
\mu(i,x)=\sum_{-\infty}^{+\infty}a_y\eta(i,x+y),
$$

where $\{\eta(i, x), (i, x) \in \mathbb{Z}_+ \times \mathbb{R}\}$ is a family of i.i.d. standard Gaussian random variables, and independent of $\{\xi(i, x), (i, x) \in$ $\mathbb{Z}_+ \times \mathbb{R}$.

 \blacktriangleright Define

$$
\mathfrak{Z}_n(\beta_n;\mu)=1+\sum_{k=1}^n\beta_n^k g_k(\mathbf{t},\mathbf{x})\left(\prod_{i=1}^k\mu\left(nt_i,n^{\frac{1}{\alpha}}x_i\right)\right).
$$

where

$$
g_k(\mathbf{t}, \mathbf{x}) := \prod_{i=1}^k g(t_i-t_{i-1}, x_i-x_{i-1}) \qquad (\mathbf{t}, \mathbf{x}) \in \Delta_k(0, 1] \times \mathbb{R}^k.
$$

KORKARA KERKER DAGA

$$
3_n(\beta_n; \omega) \xrightarrow{(d)} 1 + \sum_{k=1}^{\infty} (\beta \sqrt{q})^k \int_{\Delta_k(0,1]} \int_{\mathbb{R}^k} g_k(\mathbf{s}, \mathbf{y}) \prod_{i=1}^k \mathcal{W}(\mathrm{d}s_i \mathrm{d}y_i).
$$

$$
\lim_{n \to \infty} \mathbf{E} \left(\left(Z_n(\beta_n; \omega) e^{-n\lambda(\beta_n)} \right) - 3_n(\beta_n; \omega) \right)^2 = 0.
$$

 \blacktriangleright Therefore

 \blacktriangleright

$$
Z_n(\beta_n;\omega)e^{-n\lambda(\beta_n)}\stackrel{(d)}{\longrightarrow}1+\sum_{k=1}^\infty(\beta\sqrt{q})^k\int_{\Delta_k(0,1]}\int_{\mathbb{R}^k}g_k(\mathbf{s},\mathbf{y})\prod_{i=1}^k\mathcal{W}(\mathrm{d} s_i\mathrm{d} y_i).
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ .. 할 .. 990

Proof of Theorem [2.2](#page-17-0)

 \triangleright Consider the modified point-to-point partition defined by

$$
\mathfrak{Z}_{n,x}(\beta;\omega)=\mathbb{E}\left(\prod_{i=1}^n\left(1+\beta\omega(i,\mathbf{S}_i)\right)I_{\{\mathbf{S}_n=x\}}\right).
$$

$$
\blacktriangleright
$$
 Then

$$
3_{n,n^{1/\alpha}x}(\beta_n;\omega)
$$

=p(n,n^{1/\alpha}x)\left(1+\sum_{k=1}^n\beta_n^k\sum_{(\mathbf{t},\mathbf{x})\in\Delta\mathbb{D}_n^k}\psi_{n,\mathbf{x}}^k(\mathbf{t},\mathbf{x})\prod_{i=1}^k\omega(nt_i,n^{1/\alpha}x_i)\right)

where

$$
\psi_{n,x}^k(\mathbf{t},\mathbf{x})=\frac{p(n(1-t_k),n^{1/\alpha}(x-x_k))}{p(n,n^{1/\alpha}x)}\prod_{i=1}^k p(n(t_i-t_{i-1}),n^{1/\alpha}(x_i-x_{i-1})).
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

$$
z_n(t,x):=n^{\frac{1}{\alpha}}\mathfrak{Z}_{nt,n^{1/\alpha}x}(\beta_n;\omega),\quad \bar{z}_n(t,x)=\mathcal{P}z_n(t,x)
$$

where P is the transition probability of $\{S_n\}$.

 \blacktriangleright Then

$$
z_n(t,x)=p_n(t,x)+\beta\int_0^t\int_{\mathbb{R}}p_n(t-s,y-x)\overline{z}_n(s,y)\omega_n(s,y)\mathrm{d} s\mathrm{d} y.
$$
\n(3.2)

where

$$
\rho_n(t,x)=n^{\frac{1}{\alpha}}\rho([\mathit{nt}],[\mathit{n}^{\frac{1}{\alpha}}x])\\\omega_n(s,y)=n^{\frac{1}{2}-\frac{1}{2\alpha}+\frac{t}{\alpha}}\omega([\mathit{ns}],[\mathit{n}^{\frac{1}{\alpha}}y]).
$$

- \triangleright Convergence of finite dimensional distributions: Proof of Theorem [2.1](#page-16-1)
- \blacktriangleright Tightness: \blacktriangleright

$$
\sup_{t\in[\varepsilon,1],x\in\mathbb{R}}\mathbf{E}\left(z_n^{2m}(t,x)\right)\leq C_m,\;\sup_{t\in[\varepsilon,1]}\int_{\mathbb{R}}\mathbf{E}\left(z_n^{2m}(t,x)\right)\mathrm{d} x\leq C_m
$$

For all $t > \varepsilon$,

$$
\mathsf{E}\left(z_n(t+h,x+\delta)-z_n(t,x)\right)^{2m}\\ \leq C_m\left(h^{\left\{(1-\frac{1}{\alpha})(2r-1)m\right\}\wedge\left\{\frac{m}{\alpha}\right\}}+\delta^{\left\{(1-\frac{1}{\alpha})(2r-1)m\right\}\wedge\left\{\frac{m}{\alpha}\right\}}\right).
$$

Choose *m* large enough such that $\{(1-\frac{1}{\alpha})(2r-1)m\}\wedge {\frac{m}{\alpha}}\}$ 2.

KORKARYKERKE PORCH

- **T.** Alberts, K. Khanin, and J. Quastel. The intermediate disorder regime for directed polymers in dimension 1 + 1. *Ann. Probab.* 42(2014), 1212–1256.
- **B** G. Amir, I. Corwin, and J. Quastel. Probability distribution of the free energy of the continuum directed random polymer in 1 + 1 dimensions. *Comm. Pure Appl. Math.* 64 (2011), 466–537.
- **a** F. Caravenna, R. Sun, N. Zygouras. Polynomial chaos and scaling limits of disordered systems. *J. Eur. Math. Soc.*19(2017),1–65.
- **E. Mossel, R. O'Donnell and K. Oleszkiewicz. Noise stability** of functions with low influences: Invariance and optimality. *Ann. Math.*171(2010), 295–341.
- **B** G. L. Rang. From directed polymers in spatial-correlated environment to stochastic heat equations driven by fractional noise in 1+1 dimensions. *Stochastic Process. Appl.* 130(2020), 3408-3444.

Thank you!

Kロトメ部トメミトメミト ミニのQC